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Abstract--This paper reports the thermodynamic optimization (or entropy generation minimization) of a 
heat-driven refrigeration plant, that is, a refrigerator without work input, which is driven by a heat source. 
The treatment accounts for the heat transfer irreversibilities of the three heat exchangers, and for the 
finiteness of the total heat-exchanger inventory. The operating conditions for maximum refrigeration rate 
are determined. It is shown that the heat-exchanger inventory must be divided optimally between the three 
heat excha~Lgers. For example, half of the inventory must be placed in the heat exchanger used to reject 
heat to the ambient. The maximum refrigeration rate per unit of total heat exchanger inventory is reported. 
These the~aodynamic optimization principles are then applied to a refrigerator driven by heat transfer 

from a solar collector. 

1. INTRODUCTION 

The method of entropy generation minimization has 
emerged during the last two decades as a distinct sub- 
field in heat transfer (e.g. refs. [1, 2]). The method 
consists of the simultaneous application of heat trans- 
fer and thermodynamics principles in the pursuit of 
realistic models of heat transfer processes, devices and 
installations. By 'realistic' models we mean models 
that account for ~:he inherent irreversibility of heat, 
mass and fluid flow processes. In engineering, the 
entropy generation minimization method is also 
known as thermodynamic optimization and ther- 
modynamic design. 

The importance and growth of this field are further 
illustrated by the emergence of a parallel activity in 
physics. The phy,;ics work is usually referred to as 
thermodynamics in finite time (e.g. ref. [3]), and its 
methodology is th,~ same combination of heat transfer 
and thermodynamics. Some of the most fundamental 
results refer to the optimization of power plants and 
refrigeration plants with heat transfer irreversibilities. 
In the power generation area, the focus has been on 
the regime for the production of maximum instan- 
taneous power [4-7], which is equivalent to the regime 
of minimum entropy generation rate (cf. the Gouy- 
Stodola theorem, ref. [1], p. 24). 

In the refrigeration area, the models that have been 
optimized based on this method had power input and 

heat rejection to the ambient [8], as in the case of the 
vapor compression cycle [9]. They were optimized by 
maximizing the refrigeration load (rate of heat extrac- 
tion from the cold space), which is the same as min- 
imizing the rate of entropy generation of the refriger- 
ation plant. 

In this paper we apply the method of thermo- 
dynamic optimization to a distinct class of refriger- 
ation plants: heat driven refrigeration plants, or 
plants without work input (Fig. 1, left). Examples of 
such plants are absorption refrigerators (e.g. ref. [10]), 
and jet ejector refrigerators (e.g. ref. [11]). Our objec- 
tives are to determine : 

1. The operating conditions for maximum refriger- 
ation effect, and 

2. The optimal way of dividing a finite supply of heat 
exchanger surface between the three heat 
exchangers of the refrigeration plant. 

Heat driven refrigerators constitute an important 
class, fundamentally, because of the peculiarity of 
almost no work input, and, practically, because the 
driving heat transfer (QH in Fig. 1) can be low-grade 
heat (e.g. solar [12]) or waste heat. The utilization of 
low-grade heat sources is stressed by environmental 
and economic considerations. For this reason we con- 
clude the paper with an application of the present 
method to the optimization of a refrigerator driven 
by heat transfer from a solar collector. 
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NOMENCLATURE 

a, b constants 
A heat transfer area 
Ac collector area 
B dimensionless group, equation (35) 
GT irradiance on collector surface 
PH price of heat input 
PL price of refrigeration load 
P profit function, equation (26) 
QH heat input 
QL refrigeration load 
Q0 condenser heat transfer 
TH generator temperature 
TL refrigeration load temperature 
T~t collector stagnation temperature 
To ambient temperature 
U overall heat transfer coefficient based 

on A 
W power output 

conductance fraction, equation (19) 
conductance fraction, equation (29) 
conductance fraction, equation (29). 

Greek symbols 
z dimensionless temperature, T/To. 

Subscripts and superscripts 
()c Carnot (reversible) compartment 
()H generator, or solar collector 
( ) L evaporator 
()max maximum 
()opt optimum 
()p, ()P power plant part 
()R, ()R refrigeration plant part 
( )0 ambient 
( - )  dimensionless variable. 

2. MODEL WITH THREE HEAT TRANSFER 
IRREVERSIBILITIES 

The main external features of a heat driven refriger- 
ator are shown on the left side of Fig. 1. The working 
fluid executes cycles while removing the refrigeration 
load QL from the refrigerated space TL, and rejecting 
the heat transfer Q0 to the ambient To. The cycle is 
driven by the heat transfer QH received from the 
source temperature TH. There is no work transfer 
between the refrigerator and its environment. 

From the outset, we recognize that the refrigerator 
operates irreversibly because of several entropy-gen- 
erating mechanisms that are always present, for exam- 

pie, heat transfer, throttling and mixing [11]. In the 
model shown on the right side of Fig. 1, we have 
divided the refrigerator into four compartments, the 
three heat exchangers (QH, Q0, QL) and the rest. The 
heat exchangers account for the irreversibility of the 
machine, and the remaining components (labeled (C)) 
are modeled as irreversibility free. In other words, in 
the following analysis we neglect the irreversibility 
associated with frictional pressure drops, throttling 
and mixing. This assumption is consistent with the 
thermodynamics treatment of power plants [4-7, 13] 
and refrigeration plants based on the vapor com- 
pression cycle [9]. 

The four compartments of the irreversible refriger- 

generator 
Ta 

O'H~: r (UA) H 

THC 

heat 
source Q-. [ ~  

ambient Q-o < ~  

T H 

irreversible 
To refrigerator 

condenser 

T0c 

Q-q~z(UA) o 

T o ~  

(c) 

TL m 

evaporator Q 'L~  (UA)L 
cooled Q'L [ ~  TL TLc 
space l 

Fig. 1. Modelwith heat transfer irreversihilifies (fight) for an irreversible heat-driven refrigerator (left). 
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ator model are described analytically by the four state- Tn 
ments: Qn G(UA)H 

Q,  = ( U A ) H ( T  H -  THC ) (1) THe 

Qo = (UA)o(Toc- To) (2) 

QL = (UA)L(TL-- TLC) (3) . 

Q .  QL Q0 
4- (4) 

THe TLC Toc 
TOG 

In adition, the first law of thermodynamics requires QPJ'--I_(UA) P 

that V 
To m m m  

Q.  + QL = Q0. (5) 

Each factor of type UA in equations (1)-(3) represents 
the overall thermal conductance of the respective heat 
exchanger, or the product between the heat transfer 
area A and the overall heat transfer coefficient U based 
on A. The thermal conductances (UA) . ,  (UA)o and 
(UA)L are rough measures of the sizes (amounts of 
hardware) of the three heat exchangers, therefore a 
reasonable economic constraint is [13, 14] 

UA = (UA)H+(UA)o+(UA)L , (constant) (6) 

which states that '~he total thermal conductance inven- 
tory UA is fixed. 

The question on which we focus in the following 
analysis is how to divide the UA inventory between 
(UA) . ,  (UA)o and ( U A ) L  , such that the refrigeration 
rate QL is maximized. This problem can be solved in 
several ways. One way is to use the system (1)-(5) to 
express QL as a flanction of the thermal conductance 
distribution ratios (UA)H/UA and (UA)L/UA, and to 
maximize QL with respect to these two degrees of 
freedom. This approach seems direct; however, the 
double maximization of QL must be performed 
numerically and the competition between the three 
irreversibilities is hidden from view. Much more 
instructive is the alternative method shown next, 
which is based on conclusions known from the opti- 
mization of simpler power and refrigeration plants and 
and takes us close to the final answer by using pure 
analysis. 

3. COUPLED REFRIGERATION AND POWER 
PLANTS 

The absorption refrigeration plant of Fig. 1 (right) 
is equivalent to the coupling of a power plant and 
refrigeration plant, as is shown in Fig. 2. The power 
output (W) from the power plant (P) drives the 
refrigeration plant (R). The spaces labeled (P) and 
(R) are irreversibility free. The heat rejection to the 
ambient, which in Fig. 1 was accommodated by a 
single heat exchanger, (UA)0, is now effected by two 
heat exchangers operating in parallel, (UA) P and 
(UA) R. The equivalence between Figs. 1 and 2 is 
assured by writing 

.~_ R Q0 = Q0 P Q0 (7) 

w 
(P) 

R Q0 x~(UA)c (R) 

TL l 

QLGCOAh 

TLC [ ~  

Fig. 2. The model of Fig. 1 (right) as the coupling of a heat 
transfer-irreversible power plant (P) with a heat transfer- 

irreversible refrigeration plant (R). 

(UA)o = (uA)~ + (UA)~. (8) 

The power plant portion of the Fig. 2 model has 
been optimized in refs. [13, 14], in which the instan- 
taneous power output W was maximized with respect 
to two degrees of freedom (THe and Too or THe/Toe 
and (UA)a/(UA)~). The results that are relevant to 
the present study are 

(UA)rt,opt = (UA)Popt (9) 

Wma x = ¼(UA)pTo(z 1//2 - 1) (10) 

where (UA)p is the total thermal conductance inven- 
tory of the power-plant portion (P), 

(uA)p = ( u A ) . +  (uA)0 ~ (11) 

TH 
~" = T0 > 1. (12) 

Equation (9) states that (UA)p must be divided equally 
between the two heat exchangers of the power-plant 
portion. The question that remains is how much of 
the total inventory UA (Fig. 1) should be allocated to 
(uA)p. 

Similar progress has been made in connection with 
the refrigerator portion (R) of the model of Fig. 2. 
Without repeating the analysis of refs. [8] and [15], 
we know that when W is given the refrigeration load 
QL is maximized if 

(UA)0~op, = (UA)L.opt (13) 

while the total thermal conductance inventory of the 
refrigerator portion is constrained, 

(UA)R = (UA)~ + (UA)L. (14) 
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Fig. 3. (a) The maximization of the refrigeration load with respect to the conductance allocation ratio x. 
(b) The effect of x on the coefficient of performance. 

By repeating the analysis presented in ref. [8], it can 
be shown that the maximum QL that corresponds to 
the optimization rule (13) is 

QL . . . .  = ~(UA)R To { [(4I~-- ZL + 1)2+ 16ZL ff7]1/2 

- -  4 [ ' V +  "c L - -  1} (15) 

where 

TL 
ZL = Too < 1 (16) 

W 
I~ = (17) 

(UA)RTo" 

We now return to the original problem formulated 
in Fig. 1, by coupling the optimized (P) and (R) por- 
tions of Fig. 2. This amounts to setting W = Wm,x in 
equations (15) and (17), for which Wm,x is given by 
equation (10). The total thermal conductance inven- 
tory UA of the entire installation, equation (6), can 
be written also in terms of the total inventories of the 
(P) and (R) portions, 

UA = (UA)p+(UA)R,  (constant) (18) 

or by introducing the fraction x 

(UA)p (UA)R 
x =  UA ' l - x -  UA (19) 

After these substitutions, equation (15) becomes 

QL .. . .  = 1(1 __ X) { [ (4 l ,~max__ 27L+ 1)2+ 16ZLl~max],/2 
UA To 

-- 4 l, Vmax + T L -- 1} (20) 

where 

# m . x  = x (~h/2  - 1)  
4 ( 1 " x )  " (21) 

The expression listed in equation (20) has been max- 
imized numerically with respect to x, while holding 
the external temperature ratios zH and ZL fixed. The 
procedure is illustrated in Fig. 3(a). It is interesting to 
point out that during this maximization the coefficient 
of performance COP = QL . . . .  /QH does not exhibit a 
maximum with respect to x, Fig. 3(b). The reason is 

that ZH is assumed fixed, the heat input Qn is limitless 
and the only restriction is size and allocation of the 
UA inventory. 

The optimal allocation fraction Xopt(ZH, rE) 
obtained based on Fig. 3(a) is shown in Fig. 4. The 
answer sought in connection with equation (6) is now 
complete: it is contained in Fig. 4 and equations (9) 
and (13). In conclusion, the optimal three-way allo- 
cation of UA between the generator, condenser and 
evaporator is 

(UA)n,opt = ~Xopt UA (22) 

(UA)0,opt = ½ UA (23) 

(UA)L,opt = ½(1-Xopt)UA. (24) 

It is interesting that the optimal condenser always 
demands half of the total thermal conductance inven- 
tory, regardless of the temperature ratios TH/To and 
TL/To. Figure 4 shows that when TL/To is not much 
smaller than 1, the ratio Xop t is equal to roughly ½. This 
means that the optimal generator and evaporator con- 
ductances must have approximately the same size, 

(UA)H,opt = (UA)u,opt -~ ¼UA. (25) 

Figure 5 shows the maximum refrigeration rate that 
corresponds to the optimal allocation of the UA inven- 
tory (equations (22)-(24) and Fig. 4). The dimen- 
sionless group listed on the ordinate is a reminder that 

Xopt  

0.7 0.8 

0.5 

0 I 

2 

$. 

Fig. 4. The optimal thermal conductance allocation ratio 
x = (UA)v/UA. 
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Fig. 5. The maximum refrigeration rate of a heat driven 
refrigerator with fixed thermal conductance. 

QL has been maximized twice, first based on equation 
(13), and, second, by using Xopt. The resulting QL 
maximum increases monotonically with the heat 
source temperature ZH, and decreases monotonically 
as the refrigeration load temperature ZL decreases. 

4. THE EFFEC'I" OF THE COST OF THE HEAT 
INPUT 

The optimization described so far was based on 
maximizing the refrigeration load QL. This choice is 
appropriate only when the cost of the heat input QH 
is negligible when compared with the economic value 
of the refrigeration effect QL. In general, however, the 
heat input is not available freely, and the relevant 
objective function to maximize is the profit 

P = PL QL--PH On (26) 

Here PL and PH are the known prices of the refriger- 
ation load and the heat input. We are interested in 
dividing the total UA inventory of equation (6) such 
that P is maximized. 

The maximization of P can be performed numeri- 
cally, and our results are shown in Figs. 6(a)-(c). The 
problem statement consists of equations (1)-(6) and 
(26). We first no:a-dimensionalized these equations 
using equations (12) and (16) and 

THe Toc TLC 
ZHC = T o '  "r°c =--T~-0' "CLC = To (27) 

OH Q0 QL-- QL (28) 
0_. = UATo' 0_o - UATo' UATo" 

For  brevity, we omit the resulting dimensionless equa- 
tions, and note that equations (1)-(6) deliver QL as a 
function of five dimensionless numbers, QH, ZH, ZL, y 
and z, where 

(UA)H (UA)L 
Y =  UA ' z -  UA (29) 

Note also that according to the UA constraint (6), the 
equipment fraction allocated to the condenser is 

(UA)o 
UA - 1--y--z .  (30) 

0.5 

generator 

condenser 

(UA) tl,ola 
Yopt - UA 

(UA) 0~pl 
1 - Yopt " ZoPt " [Jh - 

evaporator z opt - 

0 0.25 

1-  
generator 

/ 

condenser 
0.52 

(UA) Lopt 
UA 

0.5 

PH /PL 

(UA) mopt 
Yopt- UA 

1-Yopt-zopt " (UA)°'°Pt 
UA 

3001 

In conclusion, the non-dimensionalized profit func- 
tion 

P ~ P H -  
P - p L  U-ATo - QL--pLQH (31) 

depends on QH, "OH, ZL, Y, Z and Pn/PL. We maximized 
P numerically by varying y and z while holding QH, 
ZH, ZL and Pn/PL constant. The pair of optimal values 
(Yopt, Zopt) that maximizes/~ is reported in Figs. 6(a)- 
(c) for several combinations of QH, rn, ZL and PH/PL. 
Note that the limit PH/PL = 0 represents the QL max- 
imization results described in the preceding section. 

In ejector refrigeration cycle applications the source 
temperature TH varies between 80 oC and 130 °C, and 
the refrigeration load is extracted from temperatures 

(UA) Imp3_ 
evaporator z opt - UA 

0 ~ • L ~ _ _  
0 0.25 0.5 

P, /PL 

b 

I -I ~ (UA) .~p, . ~ g e n e r a t o r  Ympt - UA 

0.5 - c ~  

~ (UA) L,opt 

O - ~ ' e v a p ° r a t ° r  z opt - ?~UA - r ~ ~ 

0 0.25 0.5 

P. /PL 

C 
Fig. 6. The effect of the price ratio PH/PL on the optimal 
allocation of thermal conductance between the three heat 

exchangers. 
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condenser 

T0c 

Q-o&(UA)o 

X o ~  

(c) 

TL ItllK,~----" 

evaporator O-L& (UA) L 

TLC - -  

Fig. 7. Refrigerator driven by heat transfer from a solar collector. 

TL ranging from -- 15 "C to 5 ~'C [11]. These ranges are 
represented approximately by zH = 1.3 and ZL = 0.9, 
which have been used to develop the numerical results 
shown in Fig. 6(a). The graph shows Yopt and Zop~ in a 
way that illustrates the splitting of the total thermal 
conductance (an amount equal to 1 on the ordinate) 
between the generator, condenser and evaporator. 

The most striking feature is that the condenser 
demands half of the total thermal conductance, 
regardless of the price ratio PH/PL and the external 
temperature levels (rH, ZL)" In other words, the con- 
clusion reached in (23) is more general than in the 
model of Section 3. In each frame of Fig. 6 we see that 
(UA)L.opt increases at the expense of (UA)H,opt as the 
price ratio PH/PL increases. 

Comparing Figs. 6(a) and (b) we learn that when 
r .  increases, the evaporator conductance must be 
increased, again, at the expense of the generator con- 
ductance. Figures 6(b) and (c) show that as ZL 
decreases from 0.9 to 0.8 it has a negligible effect on 
the conductance allocation fractions yopt and Zop,. 

5. THE OPTIMAL COUPLING BETWEEN THE 
REFRIGERATOR AND A SOLAR COLLECTOR 

Consider now the class of applications where the 
heat input QH is provided at the temperature level TH 
by a flat plate solar collector, Fig. 7. The relation 
between QH and the collector temperature TH can be 
expressed as 

QH = AcGT[a--b(TH-- To)] (32) 

where Ac is the collector area, GT is the irradiance at 
the collector surface, and a and b are two constants 
that can be calculated as shown by Sokolov and 
Hershgal [12]. Equation (32) represents a collector 
with partial heat loss to the ambient. The group 

[a-b(TH--To)] is known as the collector efficiency, 
and 

a 
Tst = To+ ~ (33) 

is the stagnation (i.e. the ceiling) temperature of the 
collector. When 7". = Tst the heat input QH is zero. 

Sokolov and Hershgal [12] demonstrated that when 
the collector and heat exchanger are specified, there 
exists an optimal collector temperature for maximum 
refrigeration effect, i.e. an optimal couplin9 between 
the solar collector and the refrigerator. In this section 
we examine how this coupling is affected by the sizes 
of the heat exchangers. We begin with the observation 
that equation (32) replaces equation (1) of the earlier 
model, and that the collector (Ac, GT) replaces the 
generator (UA)H. The solar-driven refrigerator con- 
tinues to be described by the right side of Fig. 1, for 
which QH is given by equation (32), and the total UA 
inventory is to be shared by the condenser and the 
evaporator, 

UA = (UA)o+ (UA)L. (34) 

The operation of the refrigerator is governed by 
equations (2) (5), (32) and (34). These can be restated 
in dimensionless terms by using Z0c, ZLC, QH, Q0 and 
QL defined in equations (27) and (28), and the 
additional parameters 

Tst bAcGv 
~" = Too 8 = UA (35) 

We continue to use the evaporator conductance allo- 
cation ratio z = (UA)L/UA, and note that this time 
(UA)o/UA = 1 --z. The B parameter describes the size 
of the collector relative to the cumulative size of the 
condenser and the evaporator. By solving equations 
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Fig. 8. The optimal collector temperature (ZH.opt) and thermal 
conductance allocation ratio (zop0. (a) The effect of the col- 
lector size (B) ; (b) 1:he effect of the stagnation temperature 

(zs0 ; (c) the effect of the refrigeration temperature (rL). 

conclusion agrees approximately with the relative size 
(UA)L.opt/(UA)o.opt ~-½ described by equations (23) 
and (24). 

The effect of the stagnation temperature is illus- 
trated in Fig. 8(b). Both TH,op~ and Zopt increase as ~ 
increases. Worth noting is that zn.opt is consistently 
greater than z~,/z, i.e. greater than the optimal collector 
temperature determined in ref. [16] for a collector 
coupled to a power cycle that has no heat transfer 
irreversibilities. Finally, Fig. 8(c) shows that the 
refrigeration temperature ZL has an insignificant effect 
on the optimal results determined in this section. 

6. CONCLUSION 

In this paper we presented the thermodynamic opti- 
mization of heat driven refrigeration plants. This was 
based on a model (Fig. 1) that accounted for the 
irreversibility of the plant and the finiteness of the heat 
exchanger inventory (total thermal conductance). We 
determined the operating regime for maximum 
refrigeration effect, and saw how the optimal per- 
formance is affected by the extreme temperature levels 
of the refrigeration plant (Fig. 5). 

From a practical standpoint,  the most important  
conclusion is that the maximum refrigeration regime 
requires that the thermal conductance be allocated in 
a certain way between the three heat exchangers (Fig. 
4). The allocation of the thermal conductance is influ- 
enced to some extent by the relative price of the heat 
source (Fig. 6). The optimal thermal conductance of 
the ambient-temperature heat exchanger is half of the 
total supply, and is independent of the relative price 
of the heat source. The example of the solar driven 
refrigerator (Section 5) showed that the basic ther- 
modynamic optimization principles developed in the 
first part of the paper can be used to optimize actual 
refrigeration plants that are driven by heat transfer. 
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(2)-(5) and (32) numerically, we were able to deter- 
mine QE for a give, n set of  values for B, ~H, ~L, ~t and 
z. We varied T. arLd z until  we located the pair ('OH,opt, 
Zopt) that maximizes QL. The resulting r-,op~ and Zop, 
values are functions of three parameters, B, Zst and re. 

Figure 8(a) shows the effect of  the collector size 
(B) on the optima[ collector temperature and thermal 
conductance allocation ratio. We see that the collector 
temperature increases only slightly as the B parameter 
increases by a factor of 10 (from 0.1 to 1). The B effect 
on Zop~ is even weaker : in the B range of Fig. 8, Zoot is 
such that the optimal evaporator conductance (UA)L 
is roughly one third of the total conductance UA, or 
about  half of  the condenser conductance (UA)0. This 
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